RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SIXTH SEMESTER EXAMINATION, MAY 2016

Date	:	: 07/05/2016 PHYSICS (Honours)			
Time	:	: 11 am – 1 pm Paper : VIII	Full Mar	ks : 50	
Answer any five of the following : [5×10]					
1.	a)	a) Find an expression for the spacing between the successive (hkl) lattice planes in a l	lattice.	[4]	
	b)	b) Compare the spacings between the successive (100), (110) and (111) lattice p lattice.	lanes in a fcc	[3]	
	c)	c) Calculate the Hall coefficient of sodium on the free electron model, given that s structure of cell side 4.28Å.	odium has bcc	[3]	
2.	a)	a) Derive Bragg's equation in X-ray diffraction.		[2]	
	b)	b) Write down Laue's equation for x-ray diffraction. How does Laue's approach diffe approach?	r from Bragg's	[1+2]	
	c)	:) In a powder diffraction experiment using $Cu - K_{\alpha}$ radiation of wave-length 1.54 Å	A, the first four		
		lines are observed from a monoatomic cubic crystal when the angle 2θ are $22 \cdot 2$ and $45 \cdot 3^{\circ}$. Determine the crystal structure and the lattice parameter.	°, 31·6°, 38·9°	[4+1]	
3.	a)	a) What do you mean by the cohesive energy of a crystal? Calculate it for NaCl cry	stal explaining	[1_/]	
	b)	b) Derive the Clausius-Mosotti relation expressing the relationship between dielectri	c constant and	נייקן	
	,	atomic polarisability.		[5]	
4.	a)	a) Find the dispersion relation of a one-dimensional monoatomic lattice of lattice λ Using this relation find the limiting value of wavelength λ for which the material as non-dispersive medium.	constant 3.6Å. can be treated	[4+1]	
	b)	b) What are the basic differences between the models of Einstein and Debye for de lattice heat capacity of a solid?	termination of	[2]	
	c)	c) Assuming a solid of volume v, the number of modes of vibration having ang	ular frequency		
		between ω and $\omega + d\omega$ is given by $dN = \frac{v\omega^2 d\omega}{2\pi^2 c^3}$ where c is the velocity of s	ound in solid.		
		Calculate the Debye cut-off Frequency and write its physical significance.		[3]	
5.	a)	a) Using free electron theory, derive an expression for the electrical conductivity terms of Fermi velocity and mean free path of electrons. How does the conductive Fermi surface.	of a metal in vity relate with	[5+1]	
	b)	b) The internal energy of the free electron gas in thermal equilibrium at		[0 + 1]	
		$U = \frac{3}{5} NE_{F0} \left[1 + \frac{5\pi^2}{12} \left(\frac{T}{T_F} \right)^2 \right]$			
		Using this relation calculate the molar specific heat due to electron at constant versilver of $E_{F0} = 5.5 \text{ eV}$ at 100K.	olume in metal	[4]	
6.	a)	a) Discuss the concept of "effective mass" for an electron moving in a periodic poten	tial.	[2]	
	b)	b) Calculate the effective mass (m*) as a function of wave vector (k) for a one-dime of lattice constant 'a' having dispersion relation $E(k) = E_0 - \alpha - 4\beta \cos(ka)$ where	ensional crystal e, E_0 , α , β are		
		constants. Also find the width of the energy band and the value of 'k' at which the electron is maximum.	velocity of the	2+2+2]	

c) Argue that the effective mass of the hole is opposite to that of an electron. [2]

7.	a) Derive an expression for the built-in-electric field in a pn junction by solving one-dimensional	
	Poisson's equation. Hence find the width of the space charge region.	[4+2]
	b) Show that at thermal equilibrium the Fermi level must be constant throughout the pn diode	[3]
	c) Draw clearly the energy band diagram of a npn transistor.	[1]
8.	a) Derive the Curie-Weiss law of ferromagnetism.	[5]
	b) Explain why diamagnetism is an inherent property of an atom.	[1]
	c) What are the difference between perfect conductor and super conductor.	[2]
	d) What is Meissner effect?	[2]

_____ × _____